REVIEWS

THERMOPHYSICAL MEASUREMENTS UNDER
MONOTONIC CONDITIONS

S. E. Buravoi, V. V. Kurenin, UDC 536.2.08
and E. S. Platunov

Increasingly often, in practice, thermophysical measurements are made under quasisteady or
monotonic conditions. These methods appear attractive to researchers because of their relative simplicity
and because they allow combined measurements of the thermophysical properties (A, @, and c) to be made
over wide temperature ranges during contihuous heating—cooling of a test specimen,

The theory of quasisteady-state methods, which originate from earlier works by Lykov, Ivantsov,
and Adams [1, 2, 52}, has been developed quite completely by now, in a number of monographs and review
articles [3-10,* 11-15, 52-57]. At the same time, methods using monotonic conditions are relatively new
and have not yet been described systematically in the technical literature,

Quasisteady-state methods, or methods of regular conditions of the second kind, are based on laws
of the change of the temperature fields in bodies (test specimens), for constant rate of change of the am-
bient temperature (t; = t; + b7) or under a constant thermal flux density at the surface g(7)l;.p = const.
When these conditions are satisfied, the linear theory of heat conduction (A, a, ¢ = const) predicts that,
after some instant of time, the temperature of every point in the body changes at a constant rate and the
temperature field can be described by the equation:

br? gR (1)

G, ) =2t(r, 1) —£(0, 1) = 5@7: o o

It follows from (1) that, in order to determine a(t), it is necessary to measure the heating rate at any point
and the temperature drop 4 (r, 7), while the determination of A(t) requires a measurement of thermal flux
g and #(r, 7).

The practical implementation of quasisteady-state methods demands that the condition
b(r, v) = const 2)

be ensured.

In measurements over a wide temperature range the thermophysical parameters generally do not re-~
main constant, as required, and condition (2) can be ensured at only one point of the specimen. Automatic
regulators used for this purpose add to the complexity of the measurement apparatus and reduce the rela-
bility of experiments, especially in the high-temperature range,

Monotonic methods have evolved as a theoretical generalization and a practical extension of the
quasisteady-~state methods.

The basis of the method is an analysis of temperature fields in bodies during monotonic changes of
temperature at variable rates. A most simple test mode is usually chosen: heating the specimen in an
oven already brought up to temperature or heating it in an oven while the oven is brought up to temperature,
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free cooling in a constant-temperature medium, monotonic heating with an internal heat source, etc. In
some of these methods the computation formulas for a(t), A{t), and c(t) are derived by solving the nonlinear
equation of heat conduction, taking account of the temperature dependence of a(t), A(t), and heating rate
b(r, 7) [26-46, 591.

The mathematical procedures for temperature-field analysis in monotonic measurements are diverse.
The problem is solved by operational methods [32, 48], by expansion into power series [27, 28, 35, 38], by
the "small parameter" method with successive approximation [37, 39-421, by integral substitutions (12, 36],
by various approximate procedures [29, 30, 32, 49], and by other means [50, 51, 58].

Taits and Gol'dfarb take credit for the first attempt to prove the validity of monotonic thermophysical
measurements [26]. Their proposed method of measuring the thermal diffusivity is based on the solution
of the linear variant of the equation of heat conduction for a certain initial temperature drop 4, and speci-
men temperature rising at a constant rate. They represent the solution in the following form:

by} 1 I8 / 1 2(131‘)(,) v )
—_ —= = ==L Fo, — 1.
bt 2(15130( R? ) \ Fo b v ( ° R ®)

’

In processing the test data, the t = f(x, 7) curve is subdivided into 80-100°C ranges within each of which the
temperature appears to change linearly. For the calculation of a special graphs of ¢/b7 = f(Fo, 4,/bT) are
given; the Fo number and then the diffusivity ¢ are determined from the graphs on the basis of test values
for &, b, and 7, The Taits—Gol'dfarb method has been used in practice for studying the thermophysical
properties of large castings.

Kraev has developed methods of determining the thermal conductivity of heat insulators and metals,
also of liquids, over the total temperature range from 20 to 700°C [27]. The interesting feature of these
methods is, as the author indicates, that the heating (cooling) of a specimen may proceed under the con-
straint of any initial and any boundary conditions, provided only that the temperature of the specimen
change monotonically with time, Theoretically, the Kraev methods are based on analyzing the nonlinear
equation of heat conduction

L S A PR "
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the solution of which is sought in the form of a power series with coefficients varying as functions of time:
£, ®) = A0+ 2 Anl®) 7 )
n=1

The coefficients in this series are determined by inserting (5) into Eq. (4) and its even-order derivatives
atr =0 [27]:
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From (5) and (8) we can obtain a solution for &r, 7) = t(r, 7)~t(0, 7) and a formula for calculating

a(t). Inthe case of a cylindrical specimen, the latter becomes
2

aty =R Fa L 40 1 deg 1 k] )
4% dt 4b, dv  4c dt 2% dt
Expression (7) accounts for the temperature-dependence of the thermophysical properties and for the change
in the temperature drop #(r, T) with time, Kraev was the first to introduce a limit on the allowable magni-
tude of & in a specimen. The author has shown that, if the test is performed at 4 < 20-30°C, the last terms
inside the brackets of expression (7) may be disregarded and a few minutes after the test has begun the
first correction term becomes quite small so that it too may be disregarded.

When the specimen is a plate, the formula for a(ty) derived by Kraev includes measurements of the
time lag AT [27]: ,
R? I d*, 2 i de 1 1 dx |7 '
PR LS TR S/ VI SR SR ST R S s | ®)
al) =55 [ 3b, dt? 3 ¢ dr 3 A dt
* The derivation of (7) in [27] allows for an algebraic error in the determination of coefficient A,. Hence

we show the corrected version.

1336



Pereletov has used an analogous analysis of the heat-conduction equation to establish the validity of
a combined determination of a(t) and c(t) in the case of heat insulators [28]. He considers the temperature
field of a monotonically heated hollow cylinder filled with the test material. The hollow cylinder acts as a
calorimeter housing and is made of a material the properties of which are known, Only the nonlinearity
of the temperature rise is taken into account in the solution of the problem, while the thermophysical prop-
erties of specimen and housing are assumed constant. Even in such a simplified version, however, the ap-
plication of this analysis leads to difficult calculations and unwieldy formulas.

Brovkin has shown experimentally that the thermal diffusivity can be determined by heating a speci-
men with a monotonically decreasing thermal flux q(7) [30]. No theoretical justification has been given
for this, however.

The case of heating with a thermal flux monotonically changing with time at a constant rate, g = gy
+ b7, has been considered in {32, 58]. In [32] the problem was solved by the operational method. A for-
mula was obtained for a(t) taking into account the relation q = f(7):

R 14y 1+ bAvjg

T AT 3 * ©)

where qgy is the average value of g during the interval of time A7. The method of estimating the correc-
tion proposed in [32] is not very convenient, since it requires knowledge of the time instant T and the use
of graphical differentiation, Cape, Lehman, and Nakata [59] have sought the solution to the analogous
problem within a narrow time interval A7 in the form of a power series:
N

t— %Anvn r, 1), (10)
where Ay are constants. The functions Vp(r, 7) in the form of homogeneous polynomials of the n-th order
with respect to r? and 7 and the constants Ay are found by inserting (10) into the boundary conditions and
into the equation of heat conduction. The formula in [54] for calculating a(t) is quite unwieldy in its struc-
ture and is not convenient for practical use.

In 1960, Platunov proposed a set of procedures for measuring a(t), c(t), and A(t) for heat insulators
and semiconductors [33]. They are based on the premise that the temperature of test specimens changes
exponentially within narrow ranges of the t(x, 7) curve. This assumption becomes valid when specimens
are heated in calorimetric devices with constant-power energy sources. Such a calorimeter consists of a
massive metallic core with an effective heat-insulating shell. According to the theory of a regular heating
mode, the temperature of such a system changes exponentially — to the first approximation — and the
temperature field in the specimen during the regular heating period is described by the expression

tx, 1) —1£(x, oo) = — Au(x)exp (— mr), (11)

where t(x, 7} is the temperature of layer x at the instant of time 7, m is the heating rate, and u(x) is a
function of the space coordinate. Formulas for calculating A(t), c(t), and a(t) have beenderived from (11) in
[33]. Specifically, for calculating the thermal diffusivity during bilateral heating of a plate of thickness 2R
we have the expression
a:-—hf( //EL_R>,
Mo+ Mo VIV @K

which for mR?/a < 0.01 becomes identical to the known quasisteady-state relation.

In 1961-1962 Barskii extended his earlier method to the case where the temperature of a specimen
changes monotonically [29]. He analyzed the errors of thermophysical measurements due to nonlinear
changes in the surface temperature of a diathermal shell. The gist of the procedure is as follows. If at
time 7 =0, after a quasisteady state has been established, the heating rate by = dt,/dr changes by db, then
the temperature drop in the body will change proportionally to that change in the heating rate:

r2
@0 =4 b (12)

where A is some constant.

Introducing the concept of the system stabilization time 7* as the time required for a body to reach
a quasisteady state, Barskii finds the relative change of the temperature drop in a body during the time 7*:

1337



*  db
8 (@) [ = — -

6 dv 139

and the relative errors in the determination of A, a, and ¢ due to nonlinear temperature changes:

db
§(j) =z1¥——, j=A, a, c. 14
() =zt (14
In estimating the magnitude of 7*, the author assumes that a quasisteady state has been reached when Fo*
= 0.5 and, for a plate, at 7* = R%/2q.

This method of analysis is not sufficiently rigorous. According to Lykov's analysis of the problem
in his monograph [3], the time to reach a quasisteady state depends on the kind of boundary conditions and
by no means always corresponds to Fo* = 0.5 (for example, Fo* = 0.4 for a plate and q = const, Fo* = 1.8
when Bi — « and tg =ty + b7). ‘

In 1962-1964 Platunov analyzed the temperature fields in a cylinder and in a sphere during monotfonic
heating with a combined consideration of the variable heating rate and of the temperature dependence of the
thermophysical properties [37]. The fundamental assumption in this analysis was that the nonlinearities
arising from these two considerations could be treated as perturbations.

The nonlinear equation of heat conduction (4) has been solved in {37] by the method of successive ap-
proximation. The thermophysical measurements were assumed here to have been performed at a small
4(r, 7), usually not exceeding 30-100°C. Within such a range, provided that no phase transformations oc-
cur, the relations A(t), a(t), c(t), and b(r, 7) are approximated linearly as followsT

j=1Jo(1 +kjb),where j =g, }, ¢, b. (15)

Parameters j, and kj are referred here to the base point temperature ty(v). The relative temperature co-
efficients kj in (15) are functions of the temperature, but within the 4(r, T) ranges they are determined by
the values of the respective parameters at t,(7).

The coefficients kg4, k), and ke are for most materials less than (1-3) - 10‘3/°C and, therefore, the
stipulation

|k0]<<0,1. (16)
can rather easily be satisfied by a proper choice of 4.
Relations (15) are valid, moreover, within an error not greater than 1%.

Considering (15) and inequality (16), the nonlinear equation of heat conduction has been transformed
in {37] to:

2o P—1 dﬁ’__igg{lﬁ(k ~kb)ﬁ_kﬂ_°(i@\2}, a7

a7 i a, by \ dr

where the terms inside the brackets are corrective, if the j = f(t) relations are recognized as having the
effect of perturbations and as corresponding to (16). Equation (17) is then linearized on the basis of its
zeroth-approximation solution (without the corrections, i.e., according to the laws of quasisteady heating).
The solution to the linearized equation is found by conventional means. The temperature ty(7) and the
gradient d¢/dr at the base point serve as the boundary constraints.

The expression ,

byr® @ ( 2 ) by ] 18
_ PR AN (PSSR p ) (18)
Bir, ) 2<15a[ Togte) o ) 20,

has been obtained in [37] for the three most simple body configurations.

The basic ideas of Platunov were confirmed in 1968 by Bezrukova, Sergeev, and Partskhaladze, who
evaluated the effects of the temperature dependence of A(t), a(t), c(t), and b(t) by the method of a small
parameter [47]. :

When applied to thermophysical measurements, the method of successive approximations appears
very effective for solving nonlinear problems. Subsequently, this method has been used for a thorough

1 Only a linear approximation is considered here. The method of successive approximation yields a solu-
tion for the general case, where j(t) = jo(1 + kjd + ng +...) [41L
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analysis of temperature fields in flat, cylindrical, and spherical packing of a parallelepiped, a cube, or a
cylinder with finite length during monotonic heating—cooling, and also for generalizing the laws which gov-
ern the regular heating mode of the first kind [39-42]. The results of this analysis have been used as a
basis of a set of methods and devices for thermophysical studies over a wide total temperature range (from
~150 to 3000°C) [43-46]. Lack of space permits us to dwell here only on a few general principles.

Expressions (18) applied to simple specimens become the basic ones from which computation formu-
las are derived. They agree with the results of (27, 47] obtained by other mathematical approaches. They
yield the relations found in {31, 32, 48, 58] as special cases.

Depending on test conditions, these expressions may be put in a different form more convenient for
practical use., Such a transformation can be effected with the aid of the relations between the relative tem-
perature coefficients ky, kg, ke, kp, kp 7, and kg in [41, 42, 48]

Ry =kydke ky=tkyo—ky ky=h —Fk, k.. (19)

The first of these relations has been derived from the known relation A = acy, the second relation has been
derived from the equation of heat conduction in the zeroth approximation, and the third relation has been
derived from the law of conservation by differentiating with respect to t and 7. Parameter kp, 7= 1/by(dby
/dt), unlike kp, characterizes the degree to which the function ty(7) deviates from linearity, and kq charac-
terizes the relative changes in the thermal flux density at the specimen surface. Obviously, it is easier to
determine parameters ky, 7 and kq experimentally than ky,.

The formulas for calculating the thermophysical properties by the monotonic methods can be derived
from (18) directly, if the heating rate at the base point by(r) and the temperature drop &(r, 7) are first
measured: ‘

bt @ 2 ]
£y = 271 by 2k, — ok | O (20
o (o) 2@@{ B 2(q>+2)( i @ ) } )

In order to determine the specific heat c(t) and the thermal conductivity A(t), it is necessary in these tests
to also measure the thermal flux density g(7) absorbed by the specimen:

SN S D PR }
c(t‘))_bov'oR[l P+ 2 (ty =R O (R %) |- (21)
4R ___ @ - L 29 w}

If any other point is chosen as the base, a surface point or a point at the bulk-mean temperature, then in
Egs. (20)~-(22) only the structure of the correction terms will be different, The form of the correction can
be found with the aid of relations (15) and simplified relations for the surface temperature drop 4) or the
bulk-mean temperature drop Jy:

~

byR?
9baq, | D2

Or =0 (R, 1) O . (23)

From the metrological standpoint, direct experimental measurement of #(r, 7) and by(7) is not al-
ways convenient, while a sufficiently precise determination of the heating rate is technically difficult. For
this reason, the quasisteady-state and the monotonic methods employ, in addition to the usual procedure,
also a simpler procedure by which the time lag of the base-layer temperature TR behind the surface tem-
perature is measured in the test {27, 32, 34]. The peculiarities of a quantitative transition from Hr) and
bg(T) values to 7R values have been examined in [27, 39, 41, 42]. For this, the t(r, T) function was ex-
panded there into a Taylor series in TR around ty(T).

A transition to 7R leads to a change in the structure as well as in the magnitude of the correction
terms. Specifically, the formulas for calculating simple bodies become
2
R [ - 1,

a= 57— ,
2®TR 21"

(ky,r — 2k, =+ &) by, ] . (24)
The structure of the correction terms for TR measurements in the case of more complicated monotonic
heating modes is shown [41, 42],

The applicability limits for the computation formulas used in the monotonic methods are determined

by inequalities (16) in combination with analogous stipulations for kq? and ky, ¢ [48). Parameters ky, kg,
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and k¢ In these inequalities characterize the test material, while kj and ky, ; characterize the process and
can, in principle, be varied by the experimenter, Stipulations (16) for kp, k,, and k¢ are usually satis-
fied for most materials at ¢ <30-100°C, while inequalities |kg# [ < 0.1 and |kp 74! <0.1 are also valid for
qu | = ikb 7l <(1-3)- 10‘3/ °C. This means that ina monotomc mode one allows for a doubling of the rate
b(T) or of the thermal flux q(7) per every 300-400°C of temperature change in the specimen., Such test
conditions can be realized without automatic devices for maintaining by(7) = const or q = const. Further-
more, such devices cannot, in principle, serve as universal means of ensuring the regularity of quasi-
steady-state conditions, since stipulations (16) for k) and kg, are governed by the allowable temperatare
drop in a specimen [48].

It is evident from an examination of the corrective terms in formulas (18), (20), (21), (22), and (24)
that when

ij'&l<6 add (25)

with an error not greater than 6,49 during monotonic heating —cooling, all laws governing a regular heating
mode of the second kind are valid. Specifically, when ¢ <5-10°C and Ekj | < {1-8)-1073/°C, the error 6544
<1%. In this case, too, a doubling of the thermal flux q(7) and of the rate by(7) per 300-400°C during a test
is allowed [48].

Onthe other hand, near phase transitions where the thermophysical properties change drastically, the co-
efficients ky, kg, and ke mayhave muchhigher values (Ikji > (3-5) - 10"°deg™). Then, accordingto (16) and
(25), it is necessaryto include inthe computation formulas the corrective terms for nonlmeamty, and sometimes
even higher-order approximations are required [41, 42],

One particular monotonic case is free heating or cooling of a body in a thermostatic medium (t,
= const). Such a test condition has been considered by Taits and Gol'dfarb in [31], neglecting the tempera-
ture dependence of A, a, and @, With the aid of the laws governing a regular process of the first kind,
they have shown that the time by which the temperature of an inner point lags behind the temperature of
points on the periphery depends on the rate of heat transfer, i.e., on the Bi number. For a point at the
bulk-mean temperature this dependence is weaker than for a point on the surface:
RE . Rz
Tmsurf T S, @ (Bi) and T py01= Sha

@ (Bi) > v (Bi).
When Bi < 0.2, then ¢ (Bi) = 3(Bi) = 1 with an error not exceeding 1%.

P (Bi),

(26)

A more general case of free cooling has been considered in [40]. It is shown there that, if conditions
[k, 8] << 0,1 and | 8/8] << 0.1 27)

are satisfied, where & denotes the temperature excess of the body surface above the surrounding medium,
all the laws governing a monotonic process apply to free cooling. Using the equalities q = a6 and q =
(A$/R), the second inequality in (27) may be expressed differently:

Bi<< 0.2, -(28)
and this is in complete agreement with the conclusions arrived at in [31].

The initial period of a quasisteady or a monotonic process is without significance and, as a rule, not
taken into consideration. The experimenter must know the length of its duration, however, in order prop-
erly to disregard it in the analysis. In the quasisteady-state methods the duration of the transient can be
determined by solving the appropriate Lykov problems, i.e., by evaluating the relative effect of discarded
terms on the regular component of #(r, 7) [3]l. The magnitude of the relative error 8,44 incurred by dis-
regarding these terms depends on the form of the boundary conditions. Specifically, Fo* = 0.4 with an
error 8449 = 1% for a plate with g = const and Fo* = 1.9 for tg =t + b7 3.

The length of this insignificant period in a monotonic process is determined by stipulation (25) for
kp. However, its practical evaluation in an actual test is difficult, This problem has not been solved rigor-
ously and in sufficient simple terms for A(t), a(t), and b(r, 7), even with an assumed uniform initial distri-
bution of these parameters.

Pak and Osipova in [36] have based their method of measuring the thermal diffusivity on the tempera-
ture dependence of A(t)} and c(t) and on an initially uniform distribution. For linearizing the equation of
heat conduction (4) they used the following integral substitutions:
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U:i.gmdz and g:Lgaa)dz‘. (29)
7\'0 [y aO

0 0

Under specific conditions this substitution yields the equation

% a(Br 2, (30)

which has an exact solution.

The formulas for calculating a(t) and A(t) for a cylindrical specimen are obtained in the following
form:

NS (1) dt\) ,

7

I
Sl
-
—
_
4
o\.’-:ﬂ

(31)

gt ( NAx
A= 1 .
2RY N o)

The authors show that "at small temperature drops within the specimen and at small heating rates
the correction terms in Eq. (31) may be omitted."

In [48] a solution to the problem of heating a plate or a cylinder with a monotonically changing
thermal flux q(7) has been obtained for the case in which A = const and a = const. It was assumed there
that the q(7) relation could be represented as a polynomial:

n
(1) = 4. (32)
i=0
The expressions for #(r, 7) during the regular-process period, which have been derived in [48] with
the aid of (19) and (23), agree with the results in [27, 37, 44]. The following expressions have been obtained
in [48] for evaluating the length of the initial transient period when lkq«& [ <0.2-0.3 for a cylinder or for a
plate respectively:

Rila 0.95 )
Thre = In , = 14.4, 33
PO+ ak0r baadl M )
2 0.8 ‘
o= L (34)

B T|2[ -+ 2/€q’ﬁR ‘ ) add,

Thus, the theory on which the monotonic heating —cooling methods are based has been well developed
by now.

These methods facilitate large-scale thermophysical measurements on metals, heat insulators, heat
semiconductors, and ceramics within the —150 to 3000°C temperature range. All the prerequisites exist
for the wide applicability of these methods in the study of thermophysical properties of gases and liquids,
especially in the high temperature and pressure ranges. The measurement error incurred by these meth-
ods is, as a rule, determined by their degree of sophistication as well as by the design of the calorimetric
instruments, and it usually does not exceed the error of classical methods.

NOTATION
a is the thermal diffusivity;
A is the thermal conductivity;
c is the true specific heat;
t(r, ) is the temperature of a body at a point of coordinate r at the instant of time 7;
$r, 7y =t{r, 7)-t(0, T) is the temperature drop relative to the point of coordinate r = 0;
b = blr, 7) =dt/d7 is the rate of temperature change at the point r;
q=q(T) is the thermal flux density at the body surface;
2R is the thickness of a plate, the diameter of a cylinder;
® is a constant equal to 1, 2, 3 for a plate, a cylinder, and a sphere, respectively;
Fo = a1/R* is the Fourier number;
Bi = aR/A is the Biot number;
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is the heat-transfer coefficient;

AT, TR is the time by which the temperature of a base point lags behind

that of peripheral points;

kj = (1/jpHdj/db), jt) =a, ¢, A, &, b, g are the relative temperature coefficients of the respective

thermophysical parameters;

m is the rate of heating the system;
0 is the relative error;
v is the density;
to = t(O, T);
by = b(0, 7);
tg is the ambient temperature;
6 =tr, 1)ty is the temperature excess of the body surface above the sur-
rounding medium;
Tore is the length of the initial transient period before regular pro-
cess conditions are reached in a test.
LITERATURE CITED
1. A. V. Lykov, Zh, Tekh, Fiz,., 4, No. 1 (1934); 5, Nos. 2, 3 (1935).
2. G. P. Ivantsov, ibid., 4, No. 8 (1934). -
3. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola (1967).
4, N. Yu. Taits, Steel Heating Technology lin Russian], Metallurgizdat (1950).
5. G. P. Ivantsov, Heating of a Metal [in Russian], Metallurgizdat (1948).
6. A, N, Gordov, Trudy VNIIM, No, 25 (1955).
7. N. A. Yaryshev, Theoretical Principles of Measuring Nonsteady-State Temperatures lin Russian],
Energiya (1967).
8. H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids [Russian translation], Nauka (1964).
9. G. M. Kondrat'ev, in: Heat Transmission and Thermal Simulation [in Russian], Izd. AN SSSR
(1959).
10. A. V. Lykov and L, Auérman, Theory of Drying Capillary-Porous Colloidal Substances in the Food
Industry [in Russian], Pishchepromizdat, Moscow (1946),
11. A. D. Dmitrovich, Determining the Thermophysical Properties of Structural Materials lin Russian],
Gosstroiizdat (1963).
12, V. A. Osipova, Experimental Study of Heat-Transfer Processes [in Russian], Energiya (1969).
13. A. F, Chudnovskii, Thermophysical Characteristics of Dispersed Materials [in Russian], GIFML
(1962).
14, Yu. A. Kirichenko, Trudy VNIIM, No. 63 (123) (1962).
15.  Yu. P. Bargkii, Trudy NIiStroikeramiki, No. 8 (1953); Nos. 15, 16 (1960).
16. A. I Lazarev, Trudy LITMO, No. 21 (1957).
17. L. A. Semenov, Trudy PISI, No. 4 (1955); No. 9 (1957).
18.  Yu. 8. Glebov, Trudy LITMO, No. 37 (1959).
19. 1. G. Meerovich, Heat and Mass Transfer lin Russian], Vol. 8, Nauka i Tekhnika, Minsk (1968).
20. N. Yu. Taits and E. M. Gol'dfarb, Zavod. Lab., No. 3 (1950).
21. S. I. Shabanov, Zh. Tekh. Fiz., 24, No. 5 (1954).
22. G. M. Volokhov, Yu. E. Fraimalf-and A. G. Shashkov, Inzh.-Fiz. Zh., 8, No. 5 (1967); in: High-
Temperature Thermophysics [in Russian], Nauka (1969). h
23. L. L. Vasil'ev, Inzh.-Fiz. Zh., 5, No. 9 (1963); 6, No. 5 (1964); 7, No. 6 (1964).
24, L. L. Vasil'ev and Yu. E. Fraiman, Thermophysical Properties of Poor Heat Conductors [in Rus-
sian], Nauka i Tekhnika, Minsk (1967).
25. E. V. Kudryavtsev, K, N, Chakalev, and N. V. Shumakov, Nonsteady-State Heat Transfer [in Rus-
sian], Izd. AN SSSR (1961).
26. N. Yu. Taits and E. M. Gol'dfarb, Zavod. Lab., 16, No. 3 (1950).
27. O. A. Kraev, Teploenergetika, No. 4 (1956); No, 12 (1958); No, 4 (1958); Zavod. Lab., 26, No, 2
(1960).
28. 1. 1. Pereletov, Teploenergetika, No. 2 (1960).
29, Yu. P. Barskii, Trudy NIIStroikeramiki, Nos. 20, 21 (1962),
30. L. A. Brovkin, Zavod. Lab., 23, No. 8 (1957).
31. N. Yu. Taits and E. M. Gol'dfarb, ibid., 25, No. 4 (1959).

1342



32.
33,
34,
35.
36.
37.
38.
39.
40.
41,
42,
43.

44,
45.

46.

47,

48.
49.
50,
51.
52.
53.
54,
55.
56.
57,
58.
o9,
60,

. Kopa-Ovidenko and L, V. Migunov, Inzh,-Fiz, Zh., No. 1 (1960).

. Platunov, Izv. VUZ. Priborostroenie, 4, No. 1 (1961); 4, No. 4 (1961); 5, No. 1 (1962).

. Kurepin and E. S. Platunov, ibid., 4, No. 5 (1961); 8, No. 5 (1965). B

. Meerovich and G. M. Muchnik, Teploflz Vys. Temp 1, No. 2 (1963); 4, No. 2 {1966).
Pak and V. A. Osipova, Teploenergetika, No, 12 (1966); No. 6 (1967).

Platunov, Izv, VUZ, Priborostroenie, 7, No. 5 (1964).

. Kover'yanov, Teplofiz. Vys. Temp., 5, No. 1 (1967).

Platunov, Inzh.-Fiz. Zh., 9, No. 4 (1965).

Platunov, Teplofiz. Vys. Temp., 2, No. 3 (1964); 3, No. 6 (1965); 4, No. 1 (1966).
Platunov, in: Heat and Mass Transfer [in Russ1an] Vol. 1, Energlya (1966); Vol. 7 (1968).
Platunov, Doctoral Dissertation [in Russian], LITMO (1969)

. Platunov and V, V. Kurepin, in: Studies of Heat Conduction [in Russianl, Energiya (1967);
Izv VUZ Priborostroenie, 9, No, 3 (1966).

L. V. Levkovich and E, S, Platunov, Izv. VUZ. Priborostroenie, 5, No. 4 (1962),

G. N. Dul'nev et al., in: Heat and Mass Transfer lin Russianl, Vol, 7, Energiya (1966); PNTPQO
GOSINTI No, 18-66-688/4 (1966); No. 18-66-989/12, Moscow (1966).

Yu. P. Shramko, S. E, Buravoi, and E, S. Platunov, PNTPO GOSTINTI No, 18-67-197/19 (1967);
in: Heat and Mass Transfer [in Russianl, Vol. 7, Energiya (1968).

E. N. Bezrukova, K, G. Partskhaladze, and O, A. Sergeev, in: Trudy Institutov Komiteta Stan-
dartov, No, 3 (171) (1969).

E., Buravoi and E, 8, Platunov, Izv. VUZ. Priborostroenie, No, 7 (1968).

F. Shlenskii, G. E. Ostrovskii, and Yu. P. Menchev, Teplofiz. Vys. Temp., 6 (1968).

A, Surkov, in: High-Temperature Thermophysics [in Russian], Nauka (1969).

K, Li~Orlov and V. N, Volkov, in: Heat and Mass Transfer lin Russianl, Vol. 7, Energiya (1968).
D, Williamson and L. H, Adams, Phys. Rev., 14 (1919).

Krischer, VDJ Zeitschr,, 100, No. 23 (1958).

Gaskon, J. Iron and Steel fI.IS_t., No. 2 (1944).

Eiermann, Kolloid Zeitschr., 1’74, No. 2 (1961).

S. Thomas, Brit. J. Appl. Phys., 8, No. 10 (1957).

A. Rosser, S. N. Yhani, and H. Wise, J. AIAA, 4, No. 4 (1966).

J. Goldsmid, Brit. J. Appl. Phys., 15, No. 11 (1964).

Cape, C. Lehman, and M. Nakata, ibid., 34, No. 11 (1964).

Griinwald, Elektrowirme, No. 8 (1938).

FEHEHEBSBE" S8
L pmpnnnEpnRang

ErEgEspA0oES00R

1343



