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Increas ingly  often, in pract ice ,  thermophysical  measurements  are made under quasisteady or 
monotonic conditions. These methods appear at tract ive to r e s e a r c h e r s  because of their  relat ive simplici ty 
and because they allow combined measurements  of the thermophysical  proper t ies  (h, a, and c) to be made 
over wide t empera tu re  ranges during continuous hea t ing-cool ing  of a test  specimen. 

The theory  of quasis teady-s ta te  methods, which originate f rom ear l ie r  works by Lykov, Ivantsov, 
and Adams [1, 2, 52], has been developed quite completely by now, in a number of monographs and review 
ar t ic les  [3-10,* 11-15, 52-57]. At the same time, methods using monotonic conditions are  re la t ively new 
and have not yet been descr ibed sys temat ica l ly  in the technical l i terature.  

Quasis teady-s ta te  methods, or methods of regular  conditions of the second kind, are based on laws 
of the change of the tempera ture  fields in bodies (test specimens),  for constant ra te  of change of the am- 
bient t empera tu re  (t a = t o + b~-) or under a constant thermal  flux density at the surface q(~)Ix= R = const. 
When these conditions are satisfied, the l inear theory  of heat conduction (X, a, c = eonst) predicts  that, 
after  some instant of t ime, the tempera ture  of every  point in the body changes at a constant rate and the 
tempera ture  field can be descr ibed by the equation: 

(r, x) = t (r, T)--t  (0, ~) br2 qR r 2 . . . . . .  ( I )  
2q~a 2~ R ~ 

It follows f rom (1) that, in order  to determine a(t), it is neces sa ry  to measure  the heating rate at any point 
and the tempera ture  drop 0 (r, 7), while the determinat ion of X(t) requires  a measurement  of thermal  flux 
q and 0 (r, ~). 

The pract ical  implementation of quasis teady-s ta te  methods demands that the condition 

b (r, ~) = const (2) 

be ensured. 

In measurements  over a wide tempera ture  range the thermophysical  pa rame te r s  general ly  do not r e -  
main constant, as required,  and condition (2) can be ensured at only one point of the specimen. Automatic 
regula tors  used for  this purpose add to the complexity of the measurement  apparatus and reduce the re la -  
bili ty of experiments,  especially_in the h igh- tempera ture  range. 

Monotonic methods have evolved as a theoret ical  general izat ion and a pract ical  extension of the 
quas is teady-s ta te  methods. 

The basis of the method is an analysis of t empera ture  fields in bodies during monotonic changes of 
t empera tu re  at variable rates .  A most  simple test  mode is usually chosen: heating the specimen in an 
oven a l ready brought up to t empera tu re  or heating it in an oven while the oven is brought up to tempera ture ,  

* E. P. Shurygina, Methods of Determining the Thermal  Constants of Hygroscopic Heat Insulators  [in Rus-  
sian], Candidate 's  Dissertat ion,  Moscow Power Institute (1941). 

Institute of Precision Mechanics and Optics, Leningrad. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 21, No. 4, pp. 750-760, October, 1971. Original article submitted August 8, 1970. 

�9 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 ~('est 17th Street, Neu York, N. Y. 10011. 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. ,.1 
copy of this article is available from the publisher for $15.00. 

1335 



f r ee  cooling in a cons t an t - t empera tu re  medium,  monotonic heating with an internal  heat source ,  etc. In 
some  of these methods the computation fo rmulas  for  a(t), X(t), and c(t) a r e  der ived by solving the nonlinear 
equation of heat conduction, taking account of the t e m p e r a t u r e  dependence of a (t), X(t), and heating ra t e  
b(r ,  r )  [26-46, 59]. 

The mathemat ica l  p rocedures  for  t e m p e r a t u r e - f i e l d  analysis  in monotonic m e a s u r e m e n t s  a re  d iverse .  
The p rob lem is solved by operat ional  methods [32, 48], by expansion into power  s e r i e s  [27, 28, 35, 38], by 
the " smal l  p a r a m e t e r "  method with success ive  approximat ion  [37, 39-42], by integral  substi tutions [12, 36], 
by var ious  approximate  p rocedu re s  [29, 30, 32, 49], and by other means  [50, 51, 58]. 

Tai ts  and Gol 'dfarb  take credi t  for  the f i r s t  a t tempt  to p rove  the val idi ty of monotonic the rmophys ica l  
m e a s u r e m e n t s  [26]. Thei r  p roposed  method of measur ing  the t he rma l  diffusivity is based on the solution 
of the l inear  var ian t  of the equation of heat conduction for  a ce r ta in  initial t e m p e r a t u r e  drop ~0 and spec i -  
men t e m p e r a t u r e  r i s ing  at a constant ra te .  They r e p r e s e n t  the solution in the following fo rm:  

bz  -- 2,fFo 1-- ~ ,  , Fo b'~ ~? Fo, . (3) 

In p rocess ing  the t es t  data, the t = f(x, r)  curve is subdivided into 80-100~ ranges  within each of which the 
t e m p e r a t u r e  appea r s  to change l inear ly .  Fo r  the calculat ion of a specia l  g raphs  of ~ / b r  = f(Fo, ~0/br)  a r e  
given; the Fo number  and then the diffusivity a a r e  de te rmined  f rom the graphs  on the bas i s  of t e s t  values  
for  ~0, b, and T. The T a i t s - G o l ' d f a r b  method has been used in p rac t i ce  for  studying the the rmophys ica l  
p rope r t i e s  of l a rge  cast ings.  

Kraev  has developed methods of de termining the t he rma l  conductivity of heat insula tors  and meta l s ,  
a lso of liquids, over  the total  t e m p e r a t u r e  range f rom 20 to 700~ [27]. The interest ing fea ture  of these  
methods is,  as the author indicates,  that the heating (cooling) of a spec imen  may  proceed  under the con- 
s t ra int  of any initial and any boundary conditions, provided only that the t e m p e r a t u r e  of the spec imen  
change monotonical ly  with t ime.  Theore t ica l ly ,  the Kraev  methods are  based on analyzing the nonlinear  
equation of heat conduction 

1 0 t  / O~t cI)--i Ot)_L1 0~,( O_t~ ~ (4) 
V ' j ' 

the solution of which is sought in the f o r m  of a power  s e r i e s  with coefficients varying as functions of t ime:  

t (r, ~ ) _ & ( ~ ) + ~ & n ( ~ )  r~" (5) 
n =  1 

The coefficients in this s e r i e s  a re  de te rmined  by inser t ing (5) into Eq. (4) and its e v e n - o r d e r  der iva t ives  
a t r = 0  [27]: 

1 dA o 1 dt o 
A 0 (~)=l(0,~), Az=~a  " dT = 4 a  dr 

(6) 
1 1 dA~ 1 1 ~ A2 1 d~, A2. 

Aa 16 a dT ~-4- " c dt o 2~ 
- -  " ~ -  2 e t c .  

F r o m  (5) and (6) we can obtain a solution for  ~(r, r)  = t(r ,  r ) - t ( 0 ,  r)  and a fo rmula  for  calculating 
a(t). In the case  of a cyl indrical  spec imen,  the l a t t e r  becomes  

a(to)=R ~ dto [ 1 + 1 .  da? 1 dc ~ _  1 dL ~ ] .  (7) 
4-~" d~- 4b o d~ - +  4-~ " d-~ 2k " dt 

Expres s ion  (7) accounts for  the t empera tu re -dependence  of the the rmophys ica l  p rope r t i e s  and for  the change 
in the t e m p e r a t u r e  drop 0(r, r)  with t ime.  Kraev  was the f i r s t  to introduce a l imit  on the allowable magni-  
tude of 0 in a specimen.  The author has shown that, if the tes t  is p e r f o r m e d  at ~ < 20-30~ the las t  t e r m s  
inside the b racke t s  of express ion  (7) may  be d i s regarded  and a few minutes a f te r  the tes t  has begun the 
f i r s t  co r rec t ion  t e r m  becomes  quite smal l  so that it too may  be d i s regarded .  

When the spec imen is a plate ,  the fo rmula  for  a(t0) der ived by Kraev  includes m e a s u r e m e n t s  of the 
t ime  lag &r  [27]: 

R~ ! 1 d2toh.c 2 1 dc ,8 ' 1 1 d L ~ ]  (8) 
a(4)--:- 2-~-~ 1 - -  3b~" d, 2 - - T ' c "  d 7  + 3 - ' T "  d7 " 

* The der iva t ion  of (7) in [27] allows for  an a lgebra ic  e r r o r  in the de terminat ion  of coefficient A 4. Hence 
we show the co r rec ted  vers ion.  
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Pere le tov  has used an analogous analysis  of the heat-conduction equation to establish the validity of 
a combined determinat ion of a(t) and c(t) in the case of heat insulators [28]. He considers  the tempera ture  
field of a monotonically heated hollow cylinder filled with the test  material .  The hollow cylinder acts as a 
ca lor imeter  housing and is made of a mater ia l  the proper t ies  of which are  known. Only the nonlinearity 
of the tempera ture  r i se  is taken into account in the solution of the problem, while the thermophysical  prop-  
er t ies  of specimen and housing are  assumed constant. Even in such a simplified version,  however, the ap- 
plication of this analysis  leads to difficult calculations and unwieldy formulas.  

Brovkin has shown experimental ly  that the thermal  diffusivity can be determined by heating a speci-  
men with a monotonically decreas ing thermal  flux q(~-) [30]. No theoret ical  justification has been given 
for this, however. 

The case of heating with a thermal  flux monotonically changing with time at a constant rate,  q = q0 
• b% has been considered in [32, 58]. In [32] the problem was solved by the operational method. A for-  
mula was obtained for a(t) taking into account the relat ion q = f(z):  

R 2 1 @ 1  1 - ~ b h W q  
a = 4-4A~- " 2 ' (9) 

where qav is the average value of q during the interval of t ime A~-. The method of estimating the c o r r e c -  
tion proposed in [32] is not ve ry  convenient, since it requires  knowledge of the time instant ~- and the use 
of graphieal  differentiation. Cape, Lehman, and Nakata [59] have sought the solution to the analogous 
problem within a na r row t ime interval A7 in the form of a power se r ies :  

N 

�9 ), (lo) t = ~ A , y ~  (r, 
lz~O 

where A n are  constants.  The functions Vn(r, T) in the form of homogeneous polynomials of the n-th order  
with respec t  to r 2 and T and the constants A n are  found by inserting (I0) into the boundary conditions and 
into the equation of heat conduction. The formula in [54] for  calculating a(t) is quite unwieldy in its s t ruc-  
ture  and is not convenient for  pract ica l  use. 

In 1960, Platunov proposed a set of procedures  for measur ing a(t), c(t), and X(t) for heat insulators 
and semiconductors  [33]. They are  based on the p remise  that the tempera ture  of test  specimens changes 
exponentially within narrow ranges of the t(x, 7) curve. This assumption becomes valid when specimens 
are  heated in ca lor imet r ic  devices with constant-power  energy sources .  Such a ca lo r imete r  consists  of a 
mass ive  metall ic core with an effective heat-insulating shell. According to the theory of a regular  heating 
mode, the t empera tu re  of such a sys tem changes exponentially - to the f i rs t  approximation - and the 
t empera tu re  field in the specimen during the regular  heating period is descr ibed by the expression 

t (x, "0 - -  t (x, 0o) = - -  A u  (x) exp (-- re'O, (1 l) 

where t(x, ~-) is the t empera tu re  of layer  x at the instant of time ~, m is the heating rate, and u(x) is a 
function of the space coordinate. Formulas  for calculating h(t), c(t), and a(t) havebeender ived  f rom (11)in 
[33]. Specifically, for calculating the thermal  diffusivity during bilateral  heating of a plate of thickness 2R 
we have the express ion 

a 

which for m R 2 / a  < 0.01 becomes identical to the known quasis teady-s ta te  relation. 

In 196 t-1962 Barski i  extended his ea r l i e r  method to the case where the tempera ture  of a specimen 
changes monotonically [29]. He analyzed the e r r o r s  of thermophysical  measurements  due to nonlinear 
changes in the surface t empera tu re  of a diathermal  shell. The gist of the procedure  is as follows. If at 
t ime ~- = 0, after  a quasis teady state has been established, the heating rate b I = d t l / d r  changes by db, then 
the tempera ture  drop in the body will ehange proport ional ly  to that change in the heating ra te :  

F 2 
d~ = A rib, (12) 

where A is some constant. 

Introducing the concept of the sys tem stabilization time T* as the t ime required for a body to reach 
a quasisteady state, Barski i  finds the relat ive change of the tempera ture  drop in a body during the time v*: 
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"~* db 
6 ( e )  l~ ,  = 6--b- " d~- (13) 

and the re la t ive  e r r o r s  in the de te rmina t ion  of ~, a ,  and c due to nonlinear t e m p e r a t u r e  changes:  

db 6(i) = z ; ~ * - ~ ,  i=~,, a, c. (14) 

In es t imat ing the magnitude of ~-*, the author a s sumes  that a quas is teady s tate  has been reached  when Fo* 
= 0.5 and, for  a plate ,  at ~-* = R2/2a.  

This method of analysis  is not suff icient ly r igorous .  According to Lykov 's  analys is  of the p rob lem 
in his monograph [3], the t ime to r each  a quas is teady s ta te  depends on the kind of boundary conditions and 
by no means  always cor responds  to Fo* = 0.5 (for example ,  Fo* = 0.4 for  a plate and q = const,  Fo* = 1.8 
when Bi --* ~o and t R = t o + bT). 

In 1962-1964 Platunov analyzed the t e m p e r a t u r e  f ie lds  in a cyl inder  and in a sphere  during monotonic 
heating with a combined considerat ion of the var iab le  heating ra t e  and of the t e m p e r a t u r e  dependence of the 
the rmophys ica l  p rope r t i e s  [37]. The fundamental assumpt ion  in this analysis  was that the nonl inear i t ies  
a r i s ing  f rom these  two considerat ions  could be t rea ted  as per turba t ions .  

The nonlinear equation of heat conduction (4) has been solved in [37] by the method of success ive  ap-  
proximat ion .  The the rmophys ica l  m e a s u r e m e n t s  were  a s sumed  here  to have been p e r f o r m e d  at a smal l  
~(r, ~), usual ly  not exceeding 30-100~ Within such a range,  provided that no phase  t r ans fo rma t ions  oc-  
cur,  the re la t ions  X(t), a(t), c(t), and b(r,  z) a re  approximated  l inear ly  as follows? 

j =1o(1 + k j o ` ) , w h e r e j = a ,  L, c, b. (15) 

P a r a m e t e r s  J0 and kj a re  r e f e r r e d  here  to the base  point t e m p e r a t u r e  t0(v). The re la t ive  t e m p e r a t u r e  co- 
eff icients  kj in (15) a r e  functions of the t e m p e r a t u r e ,  but within the ~(r, T) ranges  they a re  de te rmined  by 
the values of the r e spec t ive  p a r a m e t e r s  at t0(T). 

The coefficients ka ,  kk, and kc a r e  for  mos t  m a t e r i a l s  l ess  than (1-3) �9 10-3/~ and, the re fore ,  the 
st ipulation 

l k j# [<  0,1 (16) 

can ra the r  eas i ly  be sat isf ied by a p rope r  choice of ~. 

Relat ions (15) a re  valid, moreove r ,  within an e r r o r  not g r e a t e r  than 1%. 

Considering (15) and inequality (16), the nonlinear equation of heat conduction has been t r a n s f o r m e d  
in [37] to: 

[ a o /dO' \2] (17) 
d~ep__ + _ _ r  dO' - -  b~ [ 1 - - ( k ~ - - k b ) ~ - - k : '  ~-o [ --~-r ) J '  
dr z r dr a o 

where the t e r m s  inside the b racke t s  a re  cor rec t ive ,  if the j = f(t) re la t ions  a r e  recognized as having the 
effect of per tu rba t ions  and as corresponding to (16). Equation (17) is then l inear ized on the bas i s  of its 
ze ro th -approx imat ion  solution (without the cor rec t ions ,  i . e . ,  according to the laws of quas is teady heating). 
The solution to the l inear ized equation is found by conventional means .  The t e m p e r a t u r e  t0(T ) and the 
gradient  d~ /dr  at the base  point se rve  as the boundary constra ints .  

The express ion  

= 2q~al_ 2 ( 2 + ~ )  ~ k~ 2qSaoj. 

has been obtained in [37] fo r  the th ree  mos t  s imple  body configurat ions.  

The basic  ideas of Platunov were  conf i rmed in 1968 by Bezrukova,  Sergeev,  and Par t skha ladze ,  who 
evaluated the effects  of the t e m p e r a t u r e  dependence of Mt), a(t), c(t), and b(t) by the method of a smal l  
p a r a m e t e r  [47]. 

When applied to thermophys iea l  m e a s u r e m e n t s ,  the method of success ive  approximat ions  appea r s  
v e r y  effect ive for  solving nonlinear p rob l ems .  Subsequently, this method has been used for  a thorough 

Only a l inear  approximat ion  is cons idered  here .  The method of success ive  approximat ion  yields a solu-  
t ion for  the genera l  case ,  where  j(t) = j0(1 + kj~ + nj~ + . . .  ) [41]. 
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analysis of temperature fields in flat, cylindrical, and spherical packing of a parallelepiped, a cube, or a 
cylinder with finite length during monotonic heating-cooling, and also for generalizing the laws which gov- 
ern the regular heating mode of the first kind [39-42]. The results of this analysis have been used as a 
basis of a set of methods and devices for thermophysieal studies over a wide total temperature range (from 
- 150 to 3000~ [43-46]. Lack of space permits us to dwell here only on a few general principles. 

Expressions (18) applied to simple specimens become the basic ones from which computation formu- 
las are derived. They agree with the results of [27, 47] obtained by other mathematical approaches. They 
yield the relations found in [31, 32, 48, 58] as special cases. 

Depending on test conditions, these expressions may be put in a different form more convenient for 
practical use. Such a transformation can be effected with the aid of the relations between the relative tem- 
perature coefficients kk, ka, ke, kb, kb,~-, and kq in [41, 42, 48]: 

kx=k~+k c, kb=kb,,--ka, kq=kx--ka+kbe. (19) 

The f i rs t  of these relat ions has been derived f rom the known relat ion k = acT,  the second relat ion has been 
derived f rom the equation of heat conduction in the zeroth approximation, and the third relat ion has been 
derived f rom the law of conservat ion by differentiating with respect  to t and 7. P a r a m e t e r  kb,~- = 1/b0(db0 
/dr)T, unlike kb, charac te r izes  the degree to which the function t0(T) deviates f rom linearity,  and kq charac-  
t e r izes  the relative changes in the thermal  flux density at the specimen surface.  Obviously, it is eas ier  to 
determine pa rame te r s  kb, ~- and kq experimental ly than k b. 

The formulas for  calculating the thermophysical  proper t ies  by the monotonic methods can be derived 
f rom (18) directly,  if the heating rate  at the base point b0(~') and the tempera ture  drop ~(r, ~-) are  f i rs t  
measured:  

2 ~ - [  2 (r + 2) \ " 

In order  to determine the specific heat e(t) and the thermal  conductivity X(t), it is necessa ry  in these tests  
to also measure  the thermal  flux density q(T) absorbed by the specimen: 

c (to) = b0-oV0~ 1 49+2 (ko. - k~) ~ ( s  9 , (21) 

k ( @ _ q R [ ~  49 ~ 2--49 k~) ] 
- -  - - - -  L~ �9 ( 2 2 )  -~-L 2(49--2) i k q - k ~ +  49 

If any other point is chosen as the base, a surface point or a point at the bulk-mean temperature, then in 
Eqs. (20)-(22) only the structure of the correction terms will be different. The form of the correction can 
be found with the aid of relations (15) and simplified relations for the surface temperature drop ~R or the 
bulk-mean temperature drop ~V: 

s -- ~' (R, ~) ~-- bnR--~2 , Ow _~ _ _ 4 9  4>~ . (23) 
249a 0 49 + 2 

F r o m  the metrological  standpoint, d i rect  experimental  measurement  of ~(r, ~) and b0(7) is not al-  
ways convenient, while a sufficiently prec i se  determinat ion of the heating rate is technically difficult. For  
this reason,  the quas is teady-s ta te  and the monotonic methods employ, in addition to the usual procedure ,  
also a s impler  procedure  by which the t ime lag of the base - l aye r  tempera ture  T R behind the surface tem-  
pera ture  is measured  in the test [27, 32, 34]. The peculiar i t ies  of a quantitative t ransi t ion f rom ~(r) and 
b0(~-) values to z'R values have been examined in [27, 39, 41, 42]. For  this, the t(r, ~-) function was ex- 
panded there into a Taylor ser ies  in ~'R around t0(~- ). 

A t ransi t ion to z- R leads to a change in the s t ruc ture  as well as in the magnitude of the cor rec t ion  
t e rms .  Specifically, the formulas  for calculating simple bodies become 

] a = 1 2(kb,v - -  2k~ -5 kx) box ~ . (24) 
2 + 4 9  

The s t ructure  of the cor rec t ion  t e rms  for 7 R measurements  in the case of more  complicated monotonic 
heating modes is shown [41, 42]. 

The applicability limits for the computation formulas used in the monotonic methods are  determined 
by inequalities (16) in combination with analogous stipulations for kqO and kb, ~ [48]. P a r a m e t e r s  kx, ka, 
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and kc in tl~ese inequalities charac ter ize  the test material ,  while kq and kb, T charac te r ize  the p rocess  and 
can, in principle,  be varied by the experimenter .  Stipulations (16) for  k~,, k a, and k c are  usually sa t i s -  
fied for most  mater ia ls  at ~9 < 30-100~ while inequalities Ikq~ I < 0.1 and Ikb, m~ ] < 0.I  a re  also valid for 
I kq I = 1 kb,~-] < (1-3) �9 10-3/~ This means that in a monotonic mode one allows for  a doubling of the rate  
b(~) or of the thermal  flux q(7) per  every  300-400~ of tempera ture  change in the specimen. Such test 
conditions can be real ized without automatic devices for maintaining b0(T) = const or q = const. Fur the r -  
more,  such devices cannot, in principle,  serve  as universal  means of ensuring the regular i ty  of quasi-  
s teady-s ta te  conditions, since stipulations (16) for kk and k a are  governed by the allowable temperat/~re 
drop in a specimen [48]. 

It is evident f rom an examination of the correc t ive  t e rms  in formUlas (18), (20), (21), (22), and (24) 
that when 

I ksOI < 6 add (25) 

with an e r r o r  not g rea te r  than 6ad d during monotonic hea t ing-cooI ing ,  all laws governing a regular  heating 
mode of the second kind are  valid. Specifically, when ~ < 5-10~ and i kj t < (1-3) �9 10-3/~ the e r r o r  5add 
< 1%. In this case,  too, a doubling of the thermal  flux q(r and of the rate  b0(r) per  300-400~ during a test 
is allowed [48]. 

On the other hand, near  phase t ransi t ions where the thermophysieal  proper t ies  change drast ical ly ,  the co- 
efficients k~, ka,  and k c mayhave  muchhigherva lues  (Ikj] > (3-5)-10-3deg-1).  Then, accordingto  (16) and 
(25), it is nece s sa ry to  include inthe computat ionformulas  the cor rec t ive  t e rms  for nonlinearity, and somet imes  
even h igher -o rder  approximations are  required [41, 42]. 

One par t icular  monotonic case is free heating or cooling of a body in a thermosta t ic  medium (t a 
= const). Such a test  condition has been considered by Taits and Gol 'dfarb in [31], neglecting the t empera -  
ture dependence of k, a ,  and ~. With the aid of the laws governing a regular  p rocess  of the f i rs t  kind, 
they have shown that the t ime by which the temperature  of an inner point lags behind the tempera ture  of 
points on the per iphery  depends on the rate  of heat t ransfer ,  i .e . ,  on the Bi number. For  a point at the 
bulk-mean tempera ture  this dependence is weaker than for a point on the surface:  

/7 ~ 
2 ~ a *  (Bi), "cmsurf-- 2r q~(Bi) and Tmvol~ (26) 

q0 (Bi) > ~p (Bi). 

When Bi < 0.2, then q~(Bi) = r - 1 with an e r r o r  not exceeding 1%. 

A more general ease of f ree  cooling has been considered in [40]. It is shown there  that, if conditions 

Ik<~r and ]~/Oj<O.l (27) 

a re  satisfied, where 0 denotes the tempera ture  excess of the body surface above the surrounding medium, 
all the laws governing a monotonic p rocess  apply to f ree cooling. Using the equalities q = ~0 and q ~ 2 
(k~/R), the second inequality in (27) may be expressed differently:  

Bi < o.2, . ( 2 s )  

and this is in complete agreement  with the conclusions ar r ived  at in [31]. 

The initial period of a quasisteady or a monotonic p rocess  is without significance and, as a rule, not 
taken into consideration. The experimenter  must know the length of its duration, however, in order  prop-  
e r ly  to d i s regard  it in the analysis.  In the quasis teady-sta te  methods the duration of the t ransient  can be 
determined by solving the appropriate Lykov problems,  i .e . ,  by evaluating the relat ive effect of discarded 
t e rms  on the regular  component of O(r, ~) [3]. The magnitude of the relat ive e r r o r  5ad d incurred by dis-  
regarding these t e rms  depends on the form of the boundary conditions. Specifically, Fo* = 0.4 with an 
e r r o r  had d = 1% for  a plate with q = const and Fo* = 1.9 for t R = t o + bT [3]. 

The length of this insignificant period in a monotonic p rocess  is determined by stipulation (25) for 
k b. However, its pract ical  evaluation in an actual test  is difficult. This problem has not been solved r i go r -  
ously and in sufficient simple t e rms  for k(t), act), and b(r, ~), even with an assumed uniform initial d is t r i -  
bution of these pa ramete r s .  

Pak and Osipova in [36] have based their  method of measur ing the thermal  diffusivity on the t empera -  
ture  dependence of )~(t) and c(t) and on an initially uniform distribution. For  l inearizing the equation of 
heat conduction (4) they used the following integral substitutions: 
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1 f ~ a(t) dr. v = - ~ o ,  (t) dt and ~ = 

0 0 

Under specific conditions this substitution yields the equation 

1 0v ) Ov - ao + - - "  - -  , 
O~ \, OP r Or 

which has an exact solution. 

form: 

(29) 

(30) 

The formulas  for calculating a(t) and X(t) for a cylindrical  specimen are obtained in the following 

i a = 4AT 1 + 
0 

2Re , - 7 -  " 

The authors show that "at small  t empera ture  drops within the specimen and at small  heating ra tes  

(31) 

the correction terms in Eq. (31) may be omitted." 

In [48] a solution to the problem of heating a plate or a cylinder with a monotonically changing 

thermal flux q(r) has been obtained for the case in which X = const and a = const. It was assumed there 
that the q(r) relation could be represented as a polynomial: 

n 

q (T) = ~ qi'd. (32) 
i=O 

The expressions for ~(r, r)  during the r egu l a r -p roce s s  period, which have been derived in [48] with 
the aid of (19) and (23), agree with the resul ts  in [27, 37, 44]. The following expressions have been obtained 
in [48] for  evaluating the length of the initial t ransient  period when Lkq~l < 0.2-0.3 for a cylinder or  for a 
plate respect ively:  

R~/a 0.95 2 
Tpre= ~ -}- 4kq~ ]n ~ad~" ~q = 14.4, (33) 

R~/a 0.8 
"CPre = ~ + 2kqg~ In , n~ = a 2. (34) 

6 add 

Thus, the theory on which the monotonic hea t ing-cool ing  methods are  based has been well developed 
by now. 

These methods facili tate l a rge - sca le  thermophysical  measurements  on metals,  heat insulators,  heat 
semiconductors ,  and ce ramics  within the -150  to 3000~ tempera ture  range. All the prerequis i tes  exist 
for  the wide applicability of these methods in the study of thermophysieal  proper t ies  of gases and liquids, 
especial ly in the high tempera ture  and p r e s s u r e  ranges.  The measurement  e r r o r  incurred by these meth-  
ods is, as a rule,  determined by their  degree of sophistication as well as by the design of the ca lor imet r ic  
instruments,  and it usually does not exceed the e r r o r  of c lassical  methods. 

a 

X 

C 

t(r,  r)  
.~(r, r) = t(r,  r ) - t ( 0 ,  r) 
b = b(r, r) = d r /d r  
q = q ( r )  

2R 

Fo = a T / R  2 

Bi = a R/X 

NOTATION 

is the thermal  diffusivity; 
is the thermal  conductivity; 
is the t rue specific heat; 
is the tempera ture  of a body at a point of coordinate r at the instant of t ime r ; 
is the tempera ture  drop relat ive to the point of coordinate r = 0; 
is the rate  of t empera tu re  change at the point r; 
is the thermal  flux density at the body surface;  
is the thickness of a plate, the d iameter  of a cylinder; 
is a constant equal to 1, 2, 3 for a plate, a cylinder,  and a sphere,  respect ively;  
is the Four i e r  number;  
is the Blot number; 
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O/ 

AT, ~R 

kj = (1/jo)(dj/dt), j ( t ) = a ,  c, k, (~, b, q 

m 
5 

t o = t(0, ~); 
b o = b(O, T); 
t a  
0 = t ( r ,  ~ ) - t  a 

Tpre 

is the hea t - t r ans fe r  coefficient; 
is the t ime by which the t empera tu re  of a base point lags behind 
that of per iphera l  points; 
a re  the re la t ive  t empera tu re  coefficients of the respec t ive  
thermophysical  p a r am e te r s ;  
is the ra te  of heating the system; 
is the re la t ive  e r ro r ;  
is the density; 

is the ambient t empera ture ;  
is the t empera tu re  excess  of the body surface above the sur -  
rounding medium; 
is the length of the initial t rans ient  per iod before  regular  p ro-  
cess  conditions are  reached in a test .  
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